feat(ggg): exam solutions for chapter 3

This commit is contained in:
Orangerot 2025-06-20 22:36:49 +02:00
parent be9ee64309
commit fe3dfc2802

View file

@ -943,27 +943,52 @@ positiv?],
question: [Was ist ein euklidischer Raum und was unterscheidet ihn
von einem affinen?],
answer: [
Ein euklidischer Vektorraum ist ein reeller Vektorraum mit einem
Skalarprodukt und ein euklidischer Raum ist ein affiner Raum, dessen
zugeordneter Vektorraum euklidisch ist.
$cal(E)^n$ bezeichnet den euklidischen $cal(A)^n$ und er Abstand zweier
Punkte $sans(p)$ und $sans(q)$ ist die Länge des Vektors $sans(q) - sans(p)$
als auch die Länge der Strecke $sans(p q)$.
])
== Euklidische Bewegungen
#card(
question: [Was gilt für ihre Matrizen?],
answer: [
Ein affines Koordinatessystem $sans(a a_1 ... a_n)$ ist ein euklidisches
Koordinatensystem, wenn die Vektoren $sans(a)_1,...,sans(a)_n$ eine
orthonormale Basis bilden.
Stellen $sans(u), sans(v)$ zwei Vektoren zezüglich einer orthonormalen Basis
dar, ist $sans(u)^t sans(v)$ ihr Skalarprodukt und allgemeiner lässt sich
jedes Skalarprodukt mit Hilfe einer symmetrischen, positiv definiten Matrix
A als $sans(u)^t A sans(v)$ schreiben. Hier setzen wir für den $cal(E)^n$
immer ein euklidisches Koordinatensystem voraus.
])
#card(
question: [Wie kann man die Drehachse einer Rotation im
dreidimensionalen Raum bestimmen?],
answer: [
Eigenvektor der Matrix $[sans(b)_1, sans(b)_2, sans(b)_3]$
Eine affine Abbildung $Phi(x) = sans(b) + B sans(x)$ ist eine Bewegung, wenn
B orthonormal ist.
])
== Euler-Winkel
#card(
question: [Was sind die Euler-Winkel und wie verwendet man sie?],
answer: [
Jede Rotation im $cal(E)^3$ kann aus einer Rotation um die z-Achse mit dem
Winkel $alpha$, eine Rotation um die gedrehte x-Achse (= $x'$-Achse) mit dem
Winkel $beta$ und eine Rotation um die zweimal gedrehte z-Achse mit dem
Winkel $gamma$ zusammengesetzt werden. Diese Rotation sind die
Euler-Drehungen um die Euler-Winkel $alpha, beta, gamma$.
#text(stroke: red)[TODO: verwendung]
])
@ -971,61 +996,140 @@ dreidimensionalen Raum bestimmen?],
#card(
question: [Was sind Quaternionen, konjugierte und normierte?],
answer: [
Quaternionen oder hyperkomplexe Zahlen sind Elemente
$
bb(q) = (q_0, ..., q_3) = q_0 dot 1 + q_1 dot i + q_2 dot j + q_3 dot k
$
des $bb(R)^4$ mit den Multiplikationsregeln
#table(columns: 5,
$dot$, $1$, $i$, $j$, $k$,
$1$, $1$, $i$, $j$, $k$,
$i$, $i$, $-1$, $k$, $-j$,
$j$, $j$, $-k$, $-1$, $i$,
$k$, $k$, $j$, $-i$, $-1$
)
d.h. für ein Quaternionenprodukt
$
bb(a) dot bb(b) &= (a_0, ..., a_3) dot (b_0, ..., b_3) \
&= (a_0 b_0 - a_1 b_1 - a_2 b_2 - a_3 b_3) \
& + (a_0 b_1 + a_1 b_0 + a_2 b_3 - a_3 b_2) dot i \
& + (a_0 b_2 - a_1 b_3 + a_2 b_0 + a_3 b_1) dot j \
& + (a_0 b_3 + a_1 b_2 - a_2 b_1 + a_3 b_0) dot k \
$
und insbesondere $bb(1) := (1, 0, 0, 0)$ und alle $bb(q)$ ist
$
bb(1) dot bb(q) = bb(q) dot bb(1)
$
Das konjugierte Quaternion zu $bb(q)$ ist
$
bb(q)^* = (q_0, -q_1, -q_2, -q_3)
$
Es heißt Einheitsquaternion oder normiertes Quaternion, falls
$
norm(bb(q))^2 = norm(bb(q)^*)^2 := sum q_i^2 = 1
$
])
#card(
question: [Wie hangen sie mit Rotationen zusammen?],
answer: [
Sei $bb(r) = (cos phi / 2, a^t, sin phi / 2) $ ein normiertes Quaternion,
d.h. $a^2 = 1$.
Dann gilt
$
bb(r) dot (0 x^t) dot bb(r)^* = (mat(0, ""; "", R) vec(0, x))^t
$
$bb(r) = (1, 0, 0, )$ stellt die Identität dar\
$bb(r)^*$ die inverse Rotation \
$bb(p r)$ die Komposition der durch $bb(p)$ und $bb(r)$ gegebene Rotation
])
#card(
question: [Was lasst sich mit Quaternionen, Euler­Winkeln und
Drehmatrizen jeweils besser gut darstellen oder
durchführen?],
answer: [
*Euler-Winkel*: interpolation, anwendung auf pkt\
*Matirx*: anwendung auf pkt\
*Quaternion*: Konkatenation, Normierung, Interpolation
])
== Zweibögen
#card(
question: [Was sind Zweibogen und Kontaktelemente?],
answer: [
Ein Zweibogen (Biarc) ist eine glatte Kurve bestehend aus zwei orientierten
Kreisbögen. Dabei dürfen Radien unendlich sein, d.h. Kreisbögen können
Strecken sein.
Ein Punkt $p$ einer Kurve bildet zusammen mit dem zugehörigen
Tangentenvektor $t, norm(t) = 1$, ein Kontaktelement der Kurve.
])
#card(
question: [Wodurch ist ein Zweibogen eindeutig festgelegt?],
answer: [
Zu zwei gegebenen Punkten $a$ und $b$ und einem Kontaktelement $c t$ gibt es
genau einen Zweibogen von $a$ nach $b$ mit der Tangentenrichtung $t$ um
Übergangspunkt $c$ zwischen den beiden Bögen.
])
#card(
question: [Was erfüllen die drei Endkontaktelemente der beiden
Bogen eines Zweibogens?],
answer: [
])
#card(
question: [Wie bekommt man alle Zweibogen zu gegebenen
Anfangs-und Endkontaktelement?],
answer: [
Im $cal(E)^2$ seien $a u$ und $c w$ zwei beliebige Kontaktelemente mit den
Tangenten $cal(A) := a + u bb(R)$ und $cal(C) := c w bb(R)$. Dann existiert
ein eindeutiger Kreis $K$ durch $a$ und $b$ sodass
$
phi := angle cal(A K) = angle cal(C K)
$
Dieser Kreis $cal(K)$ ist der Ort $cal(B)$ (d.h. die Menge) Übergangs- oder
Bindepunkte aller Zweibögen mit den Endkontaktelementen $a u$ und $c w$.
])
#card(
question: [Wie übertragen sich planare Zweibogenkonstruktionen
auf sphärische?],
answer: [
Die Sätze gelten genauso auch auf der Sphäre $S^2$ anstelle des $cal(E)^2$.
Echte Zweibögen auf $S^2$ sind räumlich: Ihre Bögen liegen in verschiedenen
Ebenen. Außerdem liegt jeder räumliche Zweibogen auf einer (eideutigen)
Sphäre.
])
== Volumen
#card(
question: [Wie ist das Volumen eines Parallelepipeds definiert?],
answer: [
Jedes k-dimensionale Parallelepiped
$
P_k := sans(p) + A_k [0,1]^k
$
hat die Höhe $gamma_(k k)$ über $P_(k-1)$ und das Volumen
$
"vol"_k P_k &:= gamma_11 ... gamma_(k k) \
&= sqrt(det(Gamma_k^t B_k^t B_k Gamma_k)) \
&= sqrt(det(A_k^t A_k))
$
])
#card(
question: [Warum lassen euklidische Bewegungen
question: [Warum lassen euklidische Bewegungen Volumina invariant?
],
answer: [
Euklidische Bewegungen lassen Volumina invariant. Affinitäten
$
Phi(x) = c + C x: cal(E)^n -> cal(E)^n
$
ändern das n-dimensionale Volumina um den Faktor $abs(det C)$ und lassen
Verhältnisse n-dimensionaler Volumina invariant. (Weil C orthonormal/eine
Drehung und keine Skalierung ist?)
])
== Alternierendes Produkt
@ -1033,14 +1137,54 @@ answer: [
question: [Wie ist das alternierende Produkt definiert und welche
Eigenschaften hat es?],
answer: [
Die Determinate einer $n times n$-Matrix $A = [a_1 ... a_n]$ kann mit Hilfe
ihrer Kofaktoren $v_i = (-1)^(i+1) det A_(i 1)$ berechnet werden, wobei
$A_(i 1)$ die Matrix A ohne ihre $i$-te Zeile und erste Spalte ist; denn mit
dem Vektor $bb(b) = [v_1 ... v_n]$ der Kofaktoren git $det A = a_1^t v$.
Das alternierende Produkt der Vektoren $a_2,...,a_n$ ist der Vektor $a_2 and
... and a_n := v$.
- $a_i^t v = 0$ für $i = 2, ..., n$
- $"vol"_n A = "vol"_(n-1) [a_2 ... a_n] dot abs(a_1^t) / norm(v) => norm(v)
= "vol"_(n-1) [a_2 ... a_n]$
- $det [v a_2 ... a_n] = v^2 >= 0$, d.h. die Folge $v a_2 ... a_n$ ist
positiv orientiert.
Für $n=2$: $and vec(a,b) = vec(b, -a)$\
Für $n=3$: Kreuzprodukt $a_2 and a_3 = a_2 times a_3$
])
== Lot und Abstand
#card(
question: [Wie lassen sich die Abstände eines Punkts von einer
Ebene und die zweier Geraden berechnen?],
answer: [
Gesucht: Fußpunkt $f$ und Abstand $d$
*Punkt $p$ zu Ebene $U: d(x) = u^t x - u = 0$, sodass $f = p - d u$*:
$
u^t f &= u^t p - d = u \
=> d &= u^t p - d \
&= d(p)
$
*Punkt $p$ zu Ebene $U: x = a + [a_2 ... a_n]y =: a + A y$, sodass $f = p - d u$*:
$
d = (det mat((p-a), A))/("vol"_(n-1) A)
= (det mat((p-a), A)) / norm(a_2 and ... and a_n) \
f = p - (a_2 and ... and a_n)/(norm(a_2 and ... and a_n)) d
$
*Gerade $cal(A): x = a + a_1 lambda$ zu Gerade $cal(B): x = b + b_1 lambda$:*
$
d = ("vol"_3 mat((b-a), a_1, b_1))/("vol"_2 mat(a_1, b_1))
$
Der Fußpunkt liegt in der Ebene $cal(E) : u^t (x - a) = 0$
$
... => f = b + b_1 (u^t (a-b)) / (u^t b_1)
$
])
= Perspektivische Darstellungen
== Homogene Koordinaten