/* * Tux-Town is a chill life-simulation game. * Copyright (C) 2025 orangerot * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "assets.h" #include "world.h" #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) #define CLAMP2(val, min, max) MIN(max, MAX(min, val)) #define CLAMP(val, min, max) ((val) < (min) ? (min) : ((val) > (max) ? (max) : (val))) #define LROT(v,n) ((v << n) | (v >> (sizeof(v)*8 - n))) #define RROT(v,n) ((v >> n) | (v << (sizeof(v)*8 - n))) #define MAP_SIZE 64 struct ModelDirection { enum Asset asset; unsigned char pattern; }; struct ModelDirection rivers[] = { /* 0b12345678 * 1 | 2 | 3 * 8 | | 4 * 7 | 6 | 5 */ { .pattern = 0b11111111, .asset = ground_riverOpen }, // edge { .pattern = 0b11011111, .asset = ground_riverCornerSmall }, { .pattern = 0b01011111, .asset = ground_riverSideOpen }, { .pattern = 0b11110001, .asset = ground_riverSide }, { .pattern = 0b01010101, .asset = ground_riverCross }, { .pattern = 0b01010001, .asset = ground_riverSplit }, // STRAIGHT { .pattern = 0b01000100, .asset = ground_riverStraight }, // corner { .pattern = 0b11000001, .asset = ground_riverCorner }, // L SHAPE { .pattern = 0b01000001, .asset = ground_riverBend }, // closed { .pattern = 0b01000000, .asset = ground_riverEndClosed }, { .pattern = 0b00000000, .asset = ground_riverTile }, }; void generate_river(struct World *world, int previous) { Color *map_data = world->map_data; int map_size = world->size; int x = previous % map_size, y = previous / map_size; if (x == 0 || x == map_size -1 || y == 0 || y == map_size -1) return; int local_minimum_map_i = previous; int local_minimum_val = 255; int gradients[4][2] = {{0,-1},{-1,0},{0,1},{1,0}}; for (int gradient_i = 0; gradient_i < 4; gradient_i++) { int dx = CLAMP(x + gradients[gradient_i][0], 0, map_size - 1); int dy = CLAMP(y + gradients[gradient_i][1], 0, map_size - 1); int i = dy * map_size + dx; if (i == previous || map_data[i].r == 1) continue; if (map_data[i].b < local_minimum_val) { local_minimum_map_i = i; local_minimum_val = map_data[i].b; } } if (local_minimum_val == 255) return; map_data[local_minimum_map_i].r = 1; generate_river(world, local_minimum_map_i); } void select_river_tile(struct World *world, int x, int y, size_t *river_i, size_t *direction) { Color *map_data = world->map_data; int map_size = world->size; int surrounding[8][2] = {{-1,-1},{0,-1},{1,-1},{1,0},{1,1},{0,1},{-1,1},{-1,0}}; unsigned char river_tile = 0; for (int surrounding_i = 0; surrounding_i < 8; surrounding_i++) { int dx = CLAMP(x + surrounding[surrounding_i][0], 0, map_size - 1); int dy = CLAMP(y + surrounding[surrounding_i][1], 0, map_size - 1); if (map_data[dy * map_size + dx].r) river_tile |= 1 << (7 - surrounding_i); } for (*river_i = 0; *river_i < 11; (*river_i)++) { for (*direction = 0; *direction < 4; (*direction)++) { if ((rivers[*river_i].pattern & RROT(river_tile, 2 * *direction)) == rivers[*river_i].pattern) { return; } } } } void gen_terrain(struct World *world) { int map_size = world->size; size_t global_minimum_map_i; size_t global_minimum_val = 255; world->map = GenImagePerlinNoise(map_size, map_size, 0, 0, 1.f); world->map_texture = LoadTextureFromImage(world->map); world->map_data = LoadImageColors(world->map); for (size_t i = 0; i < map_size * map_size; i++) { int x = i % map_size, y = i / map_size; Color c = world->map_data[i]; if (c.r < global_minimum_val) { global_minimum_map_i = i; global_minimum_val = world->map_data[i].b; } world->map_data[i] = (Color) { .r = 0, .g = MAX(0, c.g - 64) / 32, .b = c.b, .a = 255 }; } world->map_data[global_minimum_map_i].r = 1; generate_river(world, global_minimum_map_i); generate_river(world, global_minimum_map_i); } // void gen_room() { // // } // // void unload_world() {} void draw_world(struct World *world) { int map_size = world->size; Color *map_data = world->map_data; Model wall = world->wall; Model ground = world->floor; for (int i = 0; i < map_size * map_size; i++) { int x = i % map_size, y = i / map_size; int gradients[4][2] = {{0,-1},{-1,0},{0,1},{1,0}}; for (int gradient_i = 0; gradient_i < 4; gradient_i++) { int dx = CLAMP(x + gradients[gradient_i][0], 0, map_size - 1); int dy = CLAMP(y + gradients[gradient_i][1], 0, map_size - 1); for (int height = map_data[i].g; height < map_data[dy * map_size + dx].g; height++) { DrawModelEx(wall, (Vector3){ .x = map_size * (x / (float) map_size - 0.5f), .y = height, .z = map_size * (y / (float) map_size - 0.5f) }, (Vector3) {0, 1, 0}, gradient_i * 90.f, (Vector3) {1,1,1}, WHITE); } } size_t river_i, direction; if (map_data[i].r) { select_river_tile(world, x, y, &river_i, &direction); } DrawModelEx(map_data[i].r ? assets[rivers[river_i].asset] : ground, (Vector3){ .x = map_size * (x / (float) map_size - 0.5f), .y = map_data[i].g, //- (map_gradient_magnitude_data[i].g < 2), .z = map_size * (y / (float) map_size - 0.5f) } , (Vector3) {0,1,0}, map_data[i].r ? direction * 90.f: 0, (Vector3) {1,1,1}, WHITE); } }